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Abstract. By means of empirical fits to the differential cross section data on pp and p̄p elastic scattering,
above 10 GeV (center-of-mass energy), we determine the eikonal in the momentum-transfer space (q2- space).
We make use of a numerical method and a novel semi-analytical method, through which the uncertainties
from the fit parameters can be propagated up to the eikonal in the q2- space. A systematic study of the
effect of the experimental information at large values of the momentum transfer is developed and discussed
in detail. We present statistical evidence that the imaginary part of the eikonal changes sign in the q2-
space and that the position of the zero decreases as the energy increases; after the position of the zero, the
eikonal presents a minimum and then goes to zero through negative values. We discuss the applicability
of our results in the phenomenological context, outlining some connections with nonperturbative QCD. A
short review and a critical discussion on the main results concerning “model-independent” analyses are
also presented.

PACS. 13.85.Dz, 13.85.-t

1 Introduction

High-energy particle scattering is the main experimental
tool in the investigation of the inner structure of mat-
ter. For particle-particle and antiparticle-particle scatter-
ing, the highest energies reached in accelerators concern
proton-proton (pp) and antiproton-proton (p̄p) collisions
and these hadronic processes are expected to be described
by the Quantum Chromodynamics (QCD), the gauge in-
variant quantum field theory of the strong interactions.
Recently, Dokshitzer stated that “QCD nowadays has a
split personality. It embodies hard and soft physics, both
being hard subjects and the softer the harder” [1]. In fact,
despite of all the success of QCD in the treatment of hard
and semi-hard scattering processes (large and medium mo-
mentum transfer, respectively), the increase of the coupling
constant when going to the soft sector (small momentum
transfer) does not allow the use of the most important tool
in theoretical physics, namely the perturbative calculation.
On the other hand, the nonperturbative QCD approach,
characterized by the non-trivial investigation of the vac-
uum structure and intricate simulation techniques in the
study of bound states, did not yet provide any result for
the scattering states, based exclusively on its own foun-
dations. Soft scattering embodies diffraction dissociation
(single and double) and elastic scattering [2] and the point
is that, presently, we do not know how to calculate even
the elastic scattering amplitude (the simplest soft process)
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in a purely nonperturbative context. Certainly, there are
QCD-based or QCD-inspired models, but, anyway, they
have only bases or inspiration in QCD [3].

However, from the experimental point of view, the
expectations in the field are very high due to the new
generation of colliders. From experiments that are being
conducted at the BNL Relativistic Heavy Ion Collider
(RHIC),we expect data on pp soft scattering at center-
of mass energies

√
s: 50–500 GeV, and in the near future

the CERN Large Hadron Collider (LHC) will provide data
on soft pp scattering at 14 TeV.

At this stage, beyond the efforts directed to pure the-
oretical developments (nonperturbative QCD) and phe-
nomenology, “empirical” analyses play an important role
in the search for model-independent results that can con-
tribute with the establishment of novel and useful theo-
retical calculational schemes. In order to achieve that, any
approach must be based on the General Principles and
Theorems of the underlying field theory, namely Unitar-
ity, Analyticity, Crossing and their well founded conse-
quences. Among the wide variety of formalisms [4], the
eikonal representation is distinguished by its intrinsic con-
nection with Unitarity [5] and its efficiency as a useful
framework for phenomenological analyses. Eikonal models
can be distinguished by the different forms of the eikonal in
the momentum-transfer space (q2-space); for our purposes,
we list some important and well known results in [6–12]. In
this context, analyses based on empirical fits to the physical
quantities involved and aimed to extract the characteris-
tics of the eikonal as function of the momentum transfer,
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energy and reaction play an essential role in the attainment
of consistent results in a model-independent way.

In a previous work [13] we investigated pp scattering at
the CERN Intersecting Storage Ring (ISR) energy region,
namely

√
s = 23.5, 30.7, 44.7, 52.8 and 62.5 GeV. By means

of fits to the differential cross section data and through a
novel “semi-analytical” method, which allowed the error
propagation from the fitted parameters, we have deter-
mined the imaginary part of the eikonal in the momentum
transfer space and have found statistical evidence for the
existence of eikonal zeros (change of sign) in the region of
momentum transfer q2 = 7 ± 2 GeV2. These results have
been used and discussed in different contexts [14–17].

In the present work, we have extended our previous
analysis in several ways: (1) we include the pp data at
lower energies, namely

√
s = 13.8 GeV and 19.5 GeV and

also p̄p data in the region 14 GeV ≤ √
s ≤ 1.8 TeV; (2) we

make use of a numerical calculation in order to check the
results obtained with the “semi-analytical” method; (3) we
present in detail the statistical regions of confidence and
all the numerical information; (4) we discuss the applica-
bility of the results in the phenomenological context and
also some possible connections with nonperturbative QCD
results. In addition, we present a critical discussion on the
different analyses aimed to extract the eikonal from fits to
the differential cross section data. Our main novel conclu-
sions are that the position of the eikonal zero decreases as
the energy increases and, after the zero, the eikonal has a
minimum and then goes to zero through negative values.

The manuscript is organized as follows. In Sect. 2 we
treat theEikonal representation, recalling the formulas con-
necting the physical quantities that characterizes the elastic
scattering with the eikonal in the q2- space and stressing
the importance of the “empirical” information. In Sect. 3,
after introducing the experimental data to be analyzed,
we shortly review some typical results and open problems
associated with model-independent analyses and, based on
these considerations, we present our strategies, mainly re-
lated to the definition of two ensembles of experimental
information. In Sect. 4 we display the results of the fits to
the differential cross section data, discussing in detail our
choice for the parametrization, the fit procedure and the
effect of the uncertainties. In Sect. 5 we treat the determi-
nation of the eikonal in the momentum transfer space by
means of both the numerical and semi-analytical methods.
In Sect. 6 we discuss the applicability of our results in a
phenomenological context and possible connections with
nonpertubative QCD results. The conclusions and some
final remarks are the contents of Sect. 7.

2 Eikonal representation

In this Section we first recall the essential formulas con-
necting the eikonal in the momentum-transfer space and
the physical quantities to be investigated. Next, we discuss
the importance of the model-independent analyses, in par-
ticular some questions related with eikonal zero (change of
sign in the q2-space).

2.1 General formalism

In the Eikonal Representation, the elastic scattering ampli-
tude, as function of the center-of-mass energy,

√
s, and the

four-momentum transfer squared, q2 ≡ −t, is expressed by

F (s, q) = i

∫ ∞

0
bdbJ0(qb){1 − eiχ̃(s,b)}, (1)

where b is the impact parameter, J0 is the zero order Bessel
function (azimuthal symmetry assumed) and χ̃(s, b) is the
eikonal function in the impact parameter space. Although
this formula may be deduced, for example, from the par-
tial wave solution of the Schroedinger equation in the high
energy limit [6], it should be stressed its character of well
founded mathematical representation, independent of any
approximation. In fact, as demonstrated by M. Islam, the
complex scattering amplitude F (s, q) has a well defined
representation in the impact parameter space, valid for all
energies and scattering angles [18]. This representation is
usually named Profile function and denoted Γ (s, b). Since
the exponential function is an entire function of its argu-
ment, we may always express the Profile function in terms
of an eikonal function:

Γ (s, b) = 1 − eiχ̃(s,b) . (2)

Unitarity allows to connect elastic and inelastic pro-
cesses, which, in the impact parameter space, may be ex-
pressed by the formula [5, 7]

2Re Γ (s, b) = |Γ (s, b)|2 + Ginel(s, b) ,

where Ginel(s, b) is the Inelastic Overlap Function, namely
the probability for an inelastic event to take place at s and
b. This probabilistic interpretation demands that

Ginel(s, b) ≤ 1 ,

and, from (2) and (3), it is automatically verified for

Im χ̃(s, b) ≥ 0 . (4)

This is the main result that characterizes the Eikonal repre-
sentation, that is, the automatic agreement with Unitarity,
a principle that, certainly, can never be violated.

The Eikonal approach has a long history of successful
results that allowed important developments. For example,
from the earlies Chou-Yang [8] and Glauber [6,9] models,
passing through the interesting geometrical formalism by
Bourrely, Soffer and Wu [10] and, more recently, the sug-
gestive connections with quarks and gluons in the QCD-
basedmodels [11,12], theEikonal picture seems to represent
a nearly natural framework and suitable phenomenologi-
cal laboratory.

All these eikonal models (and many others) may be
distinguished or classified according to different forms for
the eikonal function in the momentum transfer space, which
we shall represent by χ(s, q), the Fourier-Bessel transform
of χ̃(s, b):

χ(s, q) =
∫ ∞

0
bdbJ0(qb)χ̃(s, b) . (5)
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In general the inputs for χ(s, q) are based on analogies
with other areas (optics, geometry,. . . ) and/or related with
some microscopic concepts (elementary processes), looking
always for the expected connection with quarks and gluons,
in a well established QCD bases.

The crucial test for any input comes from the exper-
imental data on the physical quantities that characterize
the elastic scattering. This demands going from (5) to (1)
and then to the differential cross section,

dσ

dq2 = π|F (s, q2)|2 , (6)

the total cross section (Optical Theorem),

σtot = 4πIm F (s, q2 = 0) , (7)

the ρ parameter

ρ =
Re F (s, q2 = 0)
Im F (s, q2 = 0)

, (8)

and other quantities [2, 4].
Comparisons with the corresponding data allow one to

check the ideas and, in a feedback process, to reconsider
concepts and suitable phenomenological inputs, leading to
new tests. However, to reach global and efficient descrip-
tionswith an economical number of free parameters is a very
difficult task, even in the phenomenological context. One
reason is because the physical quantities depend on both
real and imaginary parts of the scattering amplitude and
those, in turn, depend on the energy, momentum and reac-
tion. Another reason concerns the fact that the model free
parameters are, in general, correlated in an intricate way,
turning it difficult to identify the explicit role or function
of each parameter in the description of the experimental
data. Moreover, in most cases, one is involved with numer-
ical calculation, which introduces bias, loss of information,
and does not allow standard error propagation.

Certainly, the abovementionedproblems canbe avoided
or, at least, minimized, if we have some kind of “empir-
ical” or “model-independent” information on the eikonal
directly in the q2-space. Once having well established sta-
tistical bases, this information may provide suitable criteria
for input selections at the early stages of the model con-
struction or development. This “inverse problem” concerns
the determination of the eikonal from fits to the experi-
mental data and that is the point we are interested in.

2.2 Eikonal zeros in the momentum-transfer space

One aspect that exemplifies the importance of this “inverse
problem” is the possibility to extract model-independent
information on the existence of eikonal zeros in the q2-
space. The point is that the diffraction minimum in the
differential cross section (the dip) is generally interpreted
as being associated with a zero in the imaginary part of
the scattering amplitude (q2-space) and, therefore, from
(1) and (5–6), it seems natural to ask if this zero in the
amplitude is connected with, or is a consequence of, a

zero in the imaginary part of the eikonal in the q2-space.
Moreover, if that is the case, what is the phenomenological
interpretation of the zero? Since that is one of the main
points we are interested to discuss in this work, and also
for future reference, let us shortly review, in chronological
order, some previous results on eikonal zeros, as well as
some phenomenological implications (see also [15]).

By the end of the sixties, the “coherent droplet model”
introduced the idea that the eikonal in the q2-space could
be expressed by the product of the hadronic form factors,
which, in turn, could be assumed similar to the electromag-
netic form factors [8]. Certainly, the similarity was thought
in general geometrical terms, such as extents and smooth-
ness. In this context, the imaginary part of the factorized
eikonal for pp scattering reads

Im χ(s, q) = C(s)Gp(q)Gp(q) , (9)

where C(s) is an absorption coefficient and the proton form
factor was represented by the dipole parametrization for
the electromagnetic form factor:

Gp(q) =
1

(1 + q2/µ2)2
, µ2 = 0.71 GeV2 . (10)

Therefore, in this model Im χ(s, q) is positive (no change of
sign) and the zero in the scattering amplitude has been in-
terpreted as an interference effect involving both protons
and not associated with the individual matter distribu-
tion [19].

However, in 1975, Victor Franco presented a detailed
fit to pp differential cross section data at

√
s = 53 GeV

and 0 < q2 ≤ 5.3 GeV2 [20], showing that Im χ may be-
come negative for q2 ≥ 6.5 GeV2 and concluding that the
droplet model should be modified. By that time there was
also indication of zeros in the pion form factor [21] and in
the proton form factor [22]. Moreover, in 1977, by means
of a multipole parametrization, Maehara, Yanagida and
Yonezawa also obtained indication of a zero in the imagi-
nary part of the eikonal at q2= 6.0 GeV2, from pp scattering
at

√
s = 53 GeV [23].

From a phenomenological or model point of view, the
problem to introduce an eikonal zero has been nicely re-
solved by Bourrely, Soffer and Wu (BSW) in 1979, by means
of the following parametrization for the form factors in the
q2-space [10,24]:

[G(q)]2 fBSW(q) =[
1

(1 + q2/m2
1)

1
(1 + q2/m2

2)

]2 [
1 − q2/a2

1 + q2/a2

]
, (11)

where m1, m2 and a are free parameters. As referred in [24],
the product of two simple poles represents the “nuclear form
factor” and the function fBSW(q) “reflects the approxi-
mate proportionality between the charge density and the
hadronic matter distribution inside a proton”. With the im-
plemented “impact picture”, BSW obtained good descrip-
tions of the experimental data with the zero fixed at a2 ≈
3.81 GeV2 [10] and, more recently, at a2 ≈ 3.45 GeV2 [24].

In the eighties, by means of fits to pp data, Sanielevici
and Valin obtained indication of a zero in imaginary part
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of the eikonal at q2 ∼ 5.0 GeV2 [25] and latter, making use
of the Amaldi and Schubert parametrization [26], Furget,
Buenerd and Valin showed that the position of the zero
decreases from q2 ∼ 8.6 GeV2 to ∼ 5 GeV2 as the energy
increases from

√
s = 23.5 GeV to 62.5 GeV [27].

As commented in our introduction, in 1997, Carvalho
and Menon presented statistical evidence for eikonal zeros
from analyses of pp scattering in the limited energy interval
23.5 ≤ √

s ≤ 62.5 GeV2. The analysis did not allow to infer
an energy dependence, but an estimated position of the zero
at q2 = 7 ± 2 GeV2 [13].

Recently, Kawasaki, Maehara and Yonezawa investi-
gated the connections between the zeros of the scatter-
ing amplitude and the zeros of the eikonal in the q2-
space [15]. In a detailed study, the authors considered
several parametrizations for the scattering amplitude and
introduced interesting correlations between the eikonal ze-
ros and a zero trajectory in the σtot versus q2 plots. One of
the conclusions of the work is the indication of an eikonal
zero at q2 ≈ 7 GeV2 (in agreement with their previous
results [14, 23]) and possibly no other zeros in the region
below q2 ≈ 20 GeV2.

From the above short review we conclude that there
are indications of an eikonal zero at q2 ≈ 7 GeV2, which,
in the phenomenological context, can be associated with
a zero in the hadronic form factor of the proton. How-
ever, despite the importance of this result, the analyses we
referred to present one or another kind of limitation, as
we shall discuss in detail in Sect. 3. As a consequence, the
exact position of the zero is not yet clear and, most impor-
tantly, the possible dependence of the position of the zero
with the energy remains an open problem. To answer these
and other questions (Sect. 3.2), by means of an improved
model-independent extraction of the eikonal, is the aim of
this work.

3 Experimental data, strategies and ensembles

In this Section we first refer to the experimental data to
be analyzed and recall the main problems and limitations
related with model-independent extraction of the eikonal
from fits to the differential cross section data. Based on this
discussion, we introduce novel procedures and strategies
through which some of these problems can be resolved or
minimized, as demonstrated in the Sections that follow.

3.1 Experimental data

As mentioned before, for particles and antiparticles the pp
and p̄p scattering correspond to the highest energy interval
with available data. In the high energy region,

√
s >10 GeV,

data on σtot, ρ and differential cross section are available
at

√
s = 13.8, 19.5, 23.5, 30.7, 44.7, 52.8 and 62.5 GeV for

pp scattering [26, 28–30] and at
√

s = 13.8, 19.4, 31, 53,
62, 546 and 1800 GeV for p̄p scattering [30,31]. Moreover,
differential cross section data from pp scattering also exists
at

√
s = 27.5 GeV and 5.5 ≤ q2 ≤ 14.2 GeV2 [28] and

as discussed in the next Subsection, that set will play a
fundamental role in our analysis.

We have selected the differential cross section data
above the region of Coulomb-nuclear interference, namely
q2 > 0.01 GeV2 and the data at q2 = 0 (optical point) is
determined from the corresponding values of σtot and ρ:

dσ

dt

∣∣∣∣
t=0

=
σ2

tot(1 + ρ2)
16π

. (12)

In terms of the momentum transfer, beyond the optical
point, the pp data cover the extended region 0.01 GeV2 <
q2 ≤ 9.8 GeV2 (except for the data at 27.5 GeV); in contrast
p̄p data are available only at 0.02 GeV2 < q2 ≤ 4.45 GeV2.

3.2 Parametrizations of the differential cross sections

Several authors have investigated elastic hadron scatter-
ing by means of parametrizations for the scattering am-
plitude and fits to the differential cross section data. The
extraction of the Profile, Eikonal and Inelastic Overlap
functions in the b-space and, in some special cases, the
Eikonal in the q2-space, has led to important and novel
results. For our purposes, some representative works are
listed in [14–16], [20], [23], [25–27], [32–40] and will be dis-
cussed in what follows. We first recall that typical extracted
results concern geometrical aspects (radius, central opac-
ity), differences between charge distributions and hadronic
matter distributions, existence or not of eikonal zeros in the
q2-space and, more recently, connections with pomerons,
reggeons and nonperturbative QCD aspects.

The basic input in all these analyses is the parametriza-
tion of the scattering amplitude as a sum of exponentials
in q2 ( [14,15,23] are exceptions) and fits to the differential
cross section data. This parametrization allows analytical
expressions for the Fourier transform of the amplitude,
providing also analytical expressions for the quantities of
interest in the b-space. However, three kind of problems
put serious limitations on the information that may be
extracted through this procedure:

(1) Experimental data are available only over finite
regions of the momentum transfer (which in general is
small, q2 < 6 GeV2) and the Fourier transform demands
integration from q2 = 0 to infinity. This means that any fit
is biased by extrapolations, a problem that has been well
put by R. Lombard [38] : “. . . extrapolating the measured
differential cross section can be done in an infinite number
ofmanners. Some extrapolated curvesmay look unphysical,
but they can not be excluded on mathematical grounds.”

(2) The exponential parametrization allows analytical
determination of the quantities in the b-space and also the
statistical uncertainties, by means of error propagation
from the fit parameters. However, in this case, the transla-
tion to the q2-space, (5), can not be analytically performed
and neither the error propagation (through standard pro-
cedures). As a consequence, the unavoidable uncertainties
from the fit extrapolations can not, in principle, be taken
into account.

(3) Some analyses introduce additional constraints in
the fit parameters so as to test some theoretical ideas or
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to obtain the dependence of some parameters as function
of the energy. Although, in general, the number of free
parameters is smaller than in “empirical” analyses, this
procedure certainly introduces theoretical bias and can
not be considered model-independent.

All the analyses based on parametrizations of the dif-
ferential cross sections face with one or more of the above
mentioned problems. Only to exemplify these aspects, we
recall that Lombard and Wilkin treated the experimental
data by generating an ensemble of fits with acceptable χ2

and defining an averaged value for the eikonal within one
standard deviation. Although the extrapolations had been
taken into account, the limitations in the interval ofmomen-
tum transfer with available data did not allow to extract
information on the eikonal at large or even intermediated
values of the momentum transfer [32]. In the analysis by
Amaldi and Schubert, statistical and scale errors from the
experimental data on pp scattering have been propagated
by means of a numerical method, but only to the impact
parameter space [26]. That is also the case in the work
by Fearnley, who treated both pp and p̄p scattering [37].
In the analysis by Sanielevici and Valin [25] and later by
Furget, Buenerd and Valin [27], the eikonal has been de-
termined in the q2-space, but without uncertainties from
the fit parameters. At last, we recall that the parametriza-
tion by Amaldi and Schubert (also used in [27]) is strongly
model dependent, since the only parameter depending on
the energy is constrained by [26]

α(s) =
[

σtot(s)
σtot(

√
s = 23.5 GeV)

]
[1 − iρ(s)] .

This embodies the geometrical scaling hypothesis, which
is well known to be violated at the Collider energy (

√
s =

546 GeV).

3.3 Strategies and ensembles

Based on the above discussion, we have developed a model
independent analysis aimed to optimize some aspects of
this kind of approach and, simultaneously, to establish the
confidence intervals of the extracted information on well
based statistical grounds. The main points are the follow-
ing:

(1) Compilation of the widest amount of experimental
information presently available.

(2) Choice of a parametrization and a fit procedure as
model independent as possible.

(3) Development of a statistical procedure in order to
estimate the eikonal uncertainties in the momentum trans-
fer space.

(4) To perform a systematic investigation of the effect
in the extracted eikonal, related with the existence or not of
experimental data at large values of the momentum trans-
fer.

To this end, we first make use of the empirical evidence
that at

√
s ∼ 20–60 GeV and for momentum transfer above

q2 ∼ 3 GeV2, the pp differential cross section data are al-
most energy independent [41,42]. This is illustrated inFig. 1
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Fig. 1. Differential cross section data for pp scattering above
q2 = 3.0 GeV and fit through (13), with the contributions from
the two exponential terms

for pp scattering at 19.5 GeV ≤ √
s ≤ 62.5 GeV. The data

show agreement with a scattering amplitude parametrized
by a sum of two exponentials in q2 and a fit through the
CERN-MINUIT routine [43] has given

F (q) = 0.032e−1.06q2
+ 0.0012e−0.42q2

, (13)

with χ2/DOF = 294/162 ∼ 1.8. The result of the fit and the
contributions from the above two components are displayed
in Fig. 1. This suggests that the data at

√
s = 27.5 GeV,

covering the region 5.5 ≤ q2 ≤ 14.2 GeV may be included
in the analyses of individual sets at other energies and our
first point is to investigate how far can we go by including
these data in different sets for pp and p̄p scattering.

Our strategy is to consider two different ensembles of
data, initially characterized and denoted as follows.

Ensemble A : Original sets of data at each energy: seven
sets for pp scattering and seven sets for p̄p scatter-
ing (Sect. 3.1).

Ensemble B : Sets of ensemble A including in each one the
data at

√
s = 27.5 GeV.

Once selected a parametrization for the scattering ampli-
tude (to be discussed in what follows) the validity or not of
ensemble B (that is, the compatibility or not of the data at
27.5 GeV with the original set) shall be checked by means of
fits through the CERN-MINUIT routine [43] and standard
statistical interpretation of the fit results [44].

We note that the addition of the data at
√

s = 27.5 GeV
to pp data at 52.8 GeV has been previously explored by
Sanielevici and Valin [25]. The novel aspect here is to per-
form a systematic investigation on the validity of this as-
sumption in other energies and in p̄p scattering.
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4 Parametrization, fitting of the data
and results

4.1 Parametrization and fit procedure

We consider the standard parametrization of the scattering
amplitude as a sum of exponentials in q2:

F (s, q) →
n∑

i=1

αie−βiq
2
.

The specific structure of the parametrization was deter-
mined by means of the following model-independent pro-
cedure.

We have first started with the pp scattering at
√

s =
52.8 GeV, since the original set (ensemble A) corresponds
to the highest interval in the momentum transfer with
available data, namely 0.01 < q2 ≤ 9.8 GeV2 and the op-
tical point, (12). The diffraction peak region, 0.01 < q2 ≤
0.5 GeV2, is characterized by a change of the slope around
q2 ∼ 0.13 GeV2 [45] and the dominance of the imaginary
part of the scattering amplitude, since ρ = 0.078 [26]. For
these reasons we have represented the imaginary part of
the amplitude by a sum of two exponentials. From the
visual examination of the data, we inferred initial values
for the free parameters and then, they have been statisti-
cally determined by means of the CERN-MINUIT routine.
A similar procedure has been used in the region of large
momentum transfer (3.0 < q2 ≤ 9.8 GeV2), leading to the
determination of two additional and independent exponen-
tial terms. In order to generate the diffraction minimum
we added to the previous fixed results an exponential term
with negative sign. Looking for the simplest approach, with
an economical number of free parameters, we have tested
the possibility that two exponential terms could represent
the real part of the amplitude. The only constraint corre-
sponds to the definition of the ρ parameter, (8). With the
“experimental” ρ value as input and using as initial values
for the free parameters those determined previously, the
fit led to a statistically consistent final result, χ2/DOF =
323/196 = 1.65.

From this result at
√

s = 52.8 GeV we fitted the pp data
in a sequence of nearest energies, using as initial values for
the free parameters those previously obtained in each case.
The same procedure has been applied to p̄p data beginning
at

√
s = 53 GeV and then going through the sequence of

nearest energies. The values of the fit parameters with
ensemble A have also been used as initial values in the fits
with ensemble B.

With this procedure we have obtained a good repro-
duction of the experimental data with the following par-
ametrizations for the real and imaginary parts of the scat-
tering amplitude:

Re F (s, q) = µ
2∑

j=1

αje−βjq2
, (14)

Im F (s, q) =
n∑

j=1

αje−βjq2
, (15)

where

µ =
ρ(s)

α1 + α2

n∑
j=1

αj , (16)

αj , βj (j=1,2,. . . ,n), are real free parameters and ρ(s) is
the value extracted from experiments at each energy. The
number of exponentials terms depends on the reaction and
data set as shown in what follows.

It should be noted that, with this procedure, the fit
parameters are completely free, since, here, we are not
interested in obtaining dependences on the energy and/or
reaction. Our aim is the best statistical result, without any
constraint in the fit parameters.

4.2 Fitting results

The central values of the free parameters in all the fits
presenting statistical consistence are displayed in Tables 1–
3, together with other statistical information. The errors in
the parameters (not displayed) correspond to an increase of
the χ2 by one unity and involve variances and covariances
which will be discussed in the next Subsection.

The results from pp scattering with ensembles A and
B appear in Tables 1 and 2. We have found that the data
at

√
s = 13.8 GeV are not compatible with the data at

27.5 GeV (ensemble B). In the case of p̄p scattering none
of the data sets are compatible with the pp data at 27.5 GeV
(ensemble B) and the results with ensemble A are displayed
in Table 3. Therefore, in what follows, ensemble B (data at√

s = 27.5 GeV added) corresponds only to pp scattering at
six energies: 19.5, 23.5, 30.7, 44.7, 52.8 and 62.5 GeV. The
fit results for pp scattering together with the experimental
data in ensembles A and B are shown in Figs. 2 and 3 and
those for p̄p scattering with ensemble A in Fig. 4.

Typical contributions to the differential cross section
from the real and imaginary parts of the scattering am-
plitude are illustrated in Figs. 5 and 6 for pp scattering
at 52.8 GeV and 30.7 GeV, respectively. These “contribu-
tions”, generated by the fit procedure without model de-
pendence (Sect. 4.1), allow one to infer some interesting
“empirical” results. We see that both the real and imagi-
nary parts of the amplitude present only one zero (change
of sign), the former at small values of the momentum trans-
fer and the later at the dip position. Also, with the excep-
tion of the dip region, which is filled by the real part, the
imaginary part dominates at all values of the momentum
transfer. It is also important to note that, although not
imposed in the fit procedure, the position of the zero of
the real part (ensemble B) is in agreement with a theo-
rem recently demonstrated by A. Martin, which states that
the real part (even amplitude) changes sign at q2 above ≈
0.1 GeV2 [46].

4.3 Uncertainties and error propagation

As mentioned before, we are interested in the determi-
nation of the confidence interval of the extracted infor-
mation, meanly related with the existence or not of ex-
perimental data at intermediate and large values of the
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Table 1. Fitting results at each energy (in GeV) for pp scattering with Ensemble A: values of the free parameters in GeV−2,
experimental ρ value, maximum value of the momentum transfer in GeV2, number of experimental points (N) and χ2 per degree
of freedom
√

s: 13.8 19.5 23.5 30.7 44.7 52.8 62.5
α1 −5.698 × 10−4 −1.465 × 10−2 −0.2390 −4.115 × 10−2 −1.090 × 10−2 −2.123 × 10−2 −4.281 × 10−2

α2 8.775 × 10−4 0.3155 3.267 3.569 0.6257 1.147 2.349
α3 5.983 4.180 0.2299 – 3.672 3.662 0.1802
α4 -3.670 -3.106 – – −3.062 −3.070 –
α5 5.514 6.588 4.657 4.641 7.432 7.020 6.326
β1 173.2 0.7601 1.141 0.9121 0.6919 0.7983 0.9444
β2 3.711 6.085 8.565 8.303 31.77 17.39 11.13
β3 2.796 2.341 1.285 – 2.172 2.277 2.832
β4 2.425 2.165 – – 2.050 2.165 –
β5 6.428 6.083 4.279 4.253 6.094 5.739 5.140
ρ -0.074 0.019 0.02 0.042 0.062 0.078 0.095
q2
max 2.82 8.15 5.75 5.75 7.25 9.75 6.25

N 100 123 134 173 208 206 125
χ2/DOF 2.03 2.96 1.14 1.00 2.13 1.65 1.16
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Fig. 2. Fit results for pp scattering with ensembles A and B
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Table 2. Fitting results for pp scattering with Ensemble B: same legend as in Table 1
√

s: 19.5 23.5 30.7 44.7 52.8 62.5
α1 −9.012 × 10−3 −0.1935 −4.044 × 10−2 −1.014 × 10−2 −2.683 × 10−2 −4.238 × 10−2

α2 0.2317 3.619 3.474 0.6030 1.198 2.023
α3 4.192 0.1538 – 3.699 3.652 0.3443
α4 -3.101 – – −3.039 −3.078 9.109 × 10−2

α5 6.650 4.326 4.742 7.404 7.002 6.405
α6 −1.572 × 10−5 −9.176 × 10−4 −1.968 × 10−3 −1.256 × 10−4 −1.673 × 10−3 −3.263 × 10−3

β1 0.6177 0.9112 0.9771 0.6685 0.9369 1.062
β2 6.055 8.178 8.424 32.62 16.94 11.96
β3 2.351 0.9123 – 2.227 2.272 3.352
β4 2.167 – – 2.095 2.169 3.335
β5 6.094 4.148 4.275 6.135 5.704 5.290
β6 6.323 × 10−2 0.3558 0.4210 0.2113 0.4061 0.4671
ρ 0.019 0.02 0.042 0.062 0.078 0.095
q2
max 14.2 14.2 14.2 14.2 14.2 14.2

N 153 164 203 238 236 155
χ2/DOF 2.80 1.20 1.28 2.13 2.07 1.51

Table 3. Fitting results for p̄p scattering with Ensemble A: same legend as in Table 1
√

s: 14 19 31 52.8 62.5 546 1800
α1 −1.423 −3.627 × 10−2 – −3.038 × 10−2 – −0.2038 –
α2 7.247 7.525 – 0.9131 – 2.854 –
α3 2.768 0.9795 – 3.471 – 0.3705 –
α4 – – – −3.214 – – –
α5 – – 8.601 7.787 7.377 9.953 16.60
α6 – – – – 1.659 – –
β1 2.027 0.6502 – 0.9858 – 1.519 –
β2 6.429 6.320 – 151.8 – 14.27 –
β3 2.487 2.770 – 2.237 – 3.235 –
β4 – – – 2.213 – – –
β5 – – 5.845 5.990 5.457 6.470 8.371
β6 – – – – 17.72 – –
ρ 0.014 0.029 0.065 0.101 0.12 0.135 0.14
q2
max 2.45 4.45 0.85 3.52 0.85 1.53 0.626

N 61 22 23 52 24 122 47
χ2/DOF 1.00 0.57 1.53 1.85 0.72 1.01 0.92

momentum transfer. For this reason we made use of the
same parametrization and fit procedure for all the sets in
ensemble A, even in the cases where the available data con-
cern only the diffraction peak, as shown in Fig. 4. Certainly,
this lack of information will be mirrored in the associated
confidence interval and that is the pointwe are interested in.

These considerations may be quantitatively exempli-
fied as follows. In each fit, the error matrix provides the
variances and covariances associated with each parameter
(the numerical values do not appear in Tables 1–3 due
to lack of space, but are available from the authors). By
means of standard error propagation [44] the uncertainties
in the free parameters, ∆αj , ∆βj , (j = 1, 2, . . . ) have been
propagated to the scattering amplitude, (14–16) and then

to the differential cross section, (6), providing

dσ

dq2 ± ∆

(
dσ

dq2

)
. (17)

By adding and subtracting the corresponding uncertainties
we may estimate the confidence region associated with all
the extrapolations, which cannot be excluded on statistical
grounds [38]. A typical result with ensembles A and B is
illustrated in Fig. 7, for pp scattering at

√
s= 23.5 GeV. We

see that, as expected, the effect of adding the experimental
data at

√
s= 27.5 GeV (when statistically justified) is to re-

duce drastically the uncertainty region. That result will be



P.A.S. Carvalho et al.: Eikonal representation in the momentum-transfer space 367

0.0 1.0 2.0 3.0 4.0 5.0
q

2
 (GeV)

2

10
−20

10
−10

10
0

10
10

10
20

 d
σ/

dt
 (

m
b/

G
eV

2 )

13.8 GeV

19.4 GeV

31 GeV

53 GeV
62 GeV

546 GeV

1,800 GeV

Fig. 4. Fits results for p̄p scattering with ensemble A

fundamental in the extraction of the empirical information
on the eikonal, as shown in what follows.

Our fit results provide useful information for studies in
the impact parameter space, namely Γ (s, b) and Ginel(s, b).
However, since we are interested here only in the eikonal
in the momentum transfer space, we postpone the impact
parameter analysis for a future work.

5 Eikonal in the momentum transfer space

5.1 Semi-analytical and numerical methods

The first steps in going to χ(s, q) are the determination of
Γ (s, b) and then χ̃(s, b). Denoting for short the real and
imaginary parts by the subscripts R and I, respectively,
and inverting (2) we have

χ̃R(s, b) = tan−1
{

ΓI(s, b)
ΓR(s, b) − 1

}
, (18)

χ̃I(s, b) = ln




1√
Γ 2

I (s, b) + [1 − ΓR(s, b)]2


 . (19)

By means of the Fourier transform, (1), the parametri-
zation (14–16) provide analytical expressions for ΓR(s, b),
ΓI(s, b), χ̃R(s, b) and χ̃I(s, b). Taking into account the vari-
ances and covariances in the fit parameters, error propa-
gation gives the uncertainties for all these quantities. An
example is shown in Fig. 8, for the case of pp scattering at√

s = 52.8 GeV (ensemble A).
As shown in Sect. 2, the imaginary part of the Eikonal is

connected with the Inelastic Overlap Function and the uni-
tarity condition, (2–4). It is usually named Opacity Func-
tion and that is the quantitywe are interested to investigate.
From the fit results, together with error propagation, we
have found that (see Fig. 8)

Γ 2
I (s, b)

[1 − ΓR(s, b)]2
� 1 ,
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Fig. 5. Proton-proton scattering at
√

s = 52.8 GeV. Contribu-
tions to the differential cross section from the real and imagi-
nary parts of the scattering amplitude with ensembles A (up)
and B (down)

and therefore, the Opacity Function may be approxi-
mated by

χ̃I(s, b) ≈ ln
1
1

− ΓR(s, b) (20)

and the uncertainty ∆χI determined directly from ∆ΓR

through error propagation.
The last step is to obtain the Fourier transform (5),

which, due to the structure of our parametrization, can
not be analytically performed. At this point we first make
use of a numerical integration through the NAG routine [47]
and the results will be presented and discussed later. Since
the numerical integration does not allow standard error
propagation, we have developed the following approach,
which we shall name semi-analytical method.

Generically, we can expand (19) in the form

χ̃I(s, b) = ΓR(s, b) + R(s, b) , (21)



368 P.A.S. Carvalho et al.: Eikonal representation in the momentum-transfer space

0.0 2.0 4.0 6.0
 q

2
 (GeV

2
)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 d
σ/

dt
 (

m
b/

G
eV

2 )

imaginary
real

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
 q

2
 (GeV

2
)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 d
σ/

dt
 (

m
b/

G
eV

2 )

imaginary
real

Fig. 6. Same as Fig. 5 for proton-proton scattering at
√

s =
30.7 GeV
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Fig. 8. Real and imaginary parts of the Profile and Eikonal
functions for pp at

√
s = 52.8 GeV, with ensemble A

where R(s, b) corresponds to the remainder of the series.
Performing the Fourier transform we obtain

χI(s, q) = FI(s, q) + R(s, q) . (22)

Since the amplitude FI(s, q) and errors ∆FI(s, q) are di-
rectly given by the fits, our task concerns the evaluation of

R(s, q) =
∫ ∞

0
bdbJ0(qb)R(s, b) , (23)

with the corresponding errors, ∆R(s, q), and this is the
central point of the method. First, from (20) and (21), the
quantity R(s, b) can be evaluated

R(s, b) = ln
[

1
1

− ΓR(s, b)
]

− ΓR(s, b) , (24)

and also the errors, ∆R(s, b), through error propagation
from ∆ΓR(s, b). We then generate a set of numerical points
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Fig. 9. Parametrization for the generated remainder R(s, b)
by means of (25), from pp scattering at 62.5 GeV

with the corresponding errors andmaking use of theCERN-
MINUIT routine this set of points with errors, R(s, b) ±
∆R(s, b), was fitted by a sum of gaussians

Rfit(s, b) =
6∑

j=1

Aje−Bjb2 . (25)

A typical result is displayed in Fig. 9. With this par-
ametrization, R(s, q) in (23) can be analytically evaluated
and also the errors, ∆R(s, q), may be estimated through
the propagation of the errors from Aj , Bj , as given by the
routine. At last, (22) leads to χI(s,q) and the error propa-
gation provides ∆χI(s, q). This method was used in [27] in
order to determine the eikonal χI(s,q). The novel aspect of
our approach is its use in the estimation of uncertainties.

5.2 Zeros and the eikonal at q2 = 0

In this Subsection, we concentrate on two aspects of the
eikonal in the momentum-transfer space: the existence of
zeros (change of sign) and the results for χI(s, q = 0) from
pp and p̄p scattering. Here we only present the results and
stress some aspects, postponing discussions and physical
interpretations to the next Section.

In order to investigate the position of the zeros and,
mainly, to determine the uncertainties in its values, we
follow [27] and consider the expected behavior of χI at
large q2, namely χI ∼ q−8. In Figs. 10 to 14 we plot the
quantity q8χI(s, q) as function of q2 for several sets ana-
lyzed and obtained with both the numerical and the semi-
analytical methods.

The results from pp scattering with ensembles A and B
are shown in Fig. 10 in the case of the numerical method and
in Fig. 11 with the semi-analytical method. In the last case,
the shaded areas correspond to the uncertainties obtained
from error propagation.
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Fig. 10. Imaginary part of the Eikonal in the momentum trans-
fer space multiplied by q8, obtained by means of the numerical
method and ensembles A and B for pp scattering. The numbers
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Figure 11 shows clearly the role and the effect of data at
large values of the momentum transfer. In fact, within the
uncertainties, ensemble A shows evidence for the change
of sign only at

√
s = 44.7 GeV and 52.8 GeV, which corre-

spond to the sets with the largest q2 interval with available
data (see Fig. 3). On the other hand, with ensemble B, we
find statistical evidence for the change of sign at all the
energies investigated. From these plots we can determine
the position of the zeros and the associated errors from the
extremes of the uncertainty region (in general not symmet-
rical). The position of the zero can also be obtained from
the numerical method (Fig. 10), but without uncertainties.

In the case of p̄p scattering the semi-analytical method
does not provide any evidence for change of sign as illus-
trated in Figs. 12–14. As mentioned before, the pp data at√

s = 27.5 GeV are not statistically consistent with the p̄p
data and, for this reaction, the regions with available data
are very small, q2 < 4.5 GeV2.

We conclude that only the pp data from ensemble B
provide statistical evidence for change of sign. The results
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Fig. 11. Imaginary part of the Eikonal in the momentum
transfer space multiplied by q8, obtained by means of the semi-
analytical method and ensembles A and B for pp scattering.
The energies are the same as indicated in Fig. 10

obtained with both methods are shown in Fig. 15. We ob-
serve a systematic difference in the position of the zeros
as obtained with the numerical and the semi-analytical
methods, the former giving values about 0.9 GeV2 below
those obtained with the later. As the energy increases from
19.5 GeV to 62.5 GeV, the position of the zero decreases
from 8.2 to 5.7 GeV2 with the numerical method and from
8.9 to 6.4 GeV2 with the semi-analytical method. Although
the decreasing is not smooth, the general trend, with both
methods, favor that behavior, indicating that the position
of the zero decreases as the energy increases.

As will be discussed, another quantity of interest is
the value of the imaginary part of the eikonal at q2 =
0. In this case, all the results obtained with ensembles A
and B and through both numerical and semi-analytical
methods are exactly the same for the central values (the
numerical method does not provide the uncertainties). The
results from pp and p̄p scattering are shown in Fig. 16 and
will be discussed in Sect. 6.3. Here we only note that the
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Fig. 12. Imaginary part of the Eikonal in the momentum
transfer space multiplied by q8, obtained by means of the nu-
merical and the semi-analytical methods with ensemble A for
p̄p scattering at 19.5 GeV

general dependence of χI(s, q) on the energy from pp and
p̄p scattering, is similar to the behavior of the total cross
sections, σpp

tot(s) and σp̄p
tot(s). In fact that is expected since,

in first order, (1) reads FI(s, q) ≈ χI(s, q) and, from the
optical theorem, σtot(s) = 4πFI(s, q = 0). We shall return
to this point in Sect. 6.1.

6 Discussion

Our main novel results are displayed in Figs. 11, 15 and
16, and refer, respectively, to the behavior of the eikonal in
the q2-space (semi-analytical method), the position of the
zero as function of the energy and the eikonal at q2 = 0.
In this Section we discuss the applicability of these results
in the phenomenological context, in connection with those
obtained by other authors.

First, we must note that to find a clear dynamical origin
for these “empirical” properties of the eikonal is obviously
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Fig. 13. Imaginary part of the Eikonal in the momentum
transfer space multiplied by q8, obtained by means of the nu-
merical and the semi-analytical methods with ensemble A for
p̄p scattering at 53 GeV

a very difficult task. For that reason, we shall consider
here a particular framework, which, despite its simplicity, is
suitable for the kind of points we are interested to raise. We
shall refer to the Multiple Diffraction Theory by Glauber [6,
9], the Chou-Yang model [8] and the impact picture by
Bourrely, Soffer and Wu [10, 22, 24]. We understand that
the essential ideas to be discussed may be extended to more
realistic or general approaches and, in fact, as we shall show,
some limited connections with nonperturbative QCD may
also be inferred. The discussion will be based on the above
three aspects, namely the eikonal zeros, the eikonal at large
q2 and the eikonal at q2 = 0.

6.1 Eikonal zeros

Let us discuss our results concerning the evidence of the
eikonal zero and its dependence on the energy in the phe-
nomenological context. We stress that we shall consider
simple approaches, so that some important questions may
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Fig. 14. Imaginary part of the Eikonal in the momentum
transfer space multiplied by q8, obtained by means of the nu-
merical and the semi-analytical methods with ensemble A for
p̄p scattering at 546 GeV

be raised and/or discussed without the influence of “tech-
nical” details.

Let us consider the Multiple Diffraction Theory by
Glauber. For the scattering between hadrons A and B
the eikonal is given by [6, 9, 48]

χ(s, q) =
NA∑
i=1

NB∑
j=1

GAGBfij ,

where GA and GB are the hadronic form factors, NA and
NB the number of constituents in each hadron and fij

the individual elementary scattering amplitudes between
constituents (parton-parton scattering amplitudes). If we
consider, for simplicity, that the elementary amplitudes are
all the same, denoted by f , and that NANB ≡ N , for pp
scattering we have for the imaginary parts

χI(s, q) = NG2
p fI . (26)
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This expression indicates that, in principle, the zero in
the imaginary part of the eikonal may be associated either
with the form factor or with the elementary amplitude. Let
us discuss both possibilities.

In the phenomenological context (multiple diffraction
models), the interpretation of the zero as associated with
the elementary amplitude has been discussed, for exam-
ple, in [48]. On the other hand, more recently, elemen-
tary amplitudes have been determined from nonpertur-
bative QCD [17, 49], by means of the Stochastic Vacuum
Model [50]. The fundamental input is the gluon gauge-
invariant two-point correlation functions, which eventu-

ally determines the structure of the elementary amplitude.
Two variants may be found in the literature, which can
be distinguished by the behavior of the correlators in the
region of small (physical) distances. From lattice QCD, in
both quenched approximation (absence of fermions) and
full QCD (dynamical fermions included), the parametrized
correlator has a divergent term, 1/x4, at the origin [51]. In
contrast, the parametrization introduced by Dosch, Fer-
reira and Krämer is finite at the origin [52]. It has been
shown in [49] that the elementary amplitudes determined
with the lattice parametrization are characterized by a
monotonic decrease of the amplitude with the momentum
transfer, through positive values (no zeros). On the other
hand, the finite correlator, by Dosch, Ferreira and Krämer,
leads to an elementary amplitude which presents a zero at
q2 ≈ 0.5 GeV2 (the position of the zero depends on the value
of the gluonic correlation length) and then goes asymptot-
ically to zero through negative values [17]. It should be
noted that this formalism is intended for asymptotic en-
ergies (s → ∞) and small momentum transfer (typically
q2 ≤ O(1) GeV2), which put some limitations in the conclu-
sions that may be inferred, as discussed in detail in [17,49].
It has been claimed that the divergent term in the corre-
lator is a perturbative effect that should not be included
in nonperturbative calculations. However, since there is no
conclusive answer to this question in the literature, the
possibility that the elementary amplitudes have no zeros
can not be disregarded.

Let us, therefore, consider the possibility that the eiko-
nal zero is associated with the form factor, that is, assum-
ing the positivity of the elementary amplitude as in the
case of the parametrization from lattice QCD [49]. In that
case, a striking result is the dependence of the position
of the eikonal zero on the energy. From a “pragmatic” or
“empirical” point of view, for pp and p̄p hadronic elastic
scattering, that dependence may be associated with the
shrinkage of the diffraction peak, an effect experimentally
verified when the energy increases in the region 23 GeV
≤ √

s ≤ 1.8 TeV [4]. In fact, as recalled before, in first or-
der, FI(s, q) ≈ χI(s, q) and, as it is known, the diffraction
peak is dominated by the imaginary part of the amplitude.
This possibility brings novel insights, since the main point
is the implication in hadronic form factors depending on
the energy, which is an old phenomenological conjecture.
In spite of the limited theoretical foundation, it was shown
in the past that the introduction of energy dependence in
form factors leads to good descriptions of the experimen-
tal data [53,54]. In particular, pp and p̄p elastic scattering
data can be well described by means of both geometrical
models [55] and hybrid Regge-dual models [56]. We un-
derstand that to explore this dependence in well founded
theoretical grounds (with analyticity and crossing taken
explicitly into account) may lead to novel results in the
investigation of the soft diffractive processes in general.

As commented in [15], the eikonal zero may indicate the
existence of two components in the hadronic elastic process,
one dominating the region of small momentum transfer
(long range) and the other the region of large momentum
transfer (short range). Roughly, these components could be
associated with the regions before and after the position of
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the zero, respectively. If that is the case the characteristic
of the long range component is the positivity of the eikonal
in the q2-space, in contrast with its negative values in the
short range region. We shall discuss this later case in the
following Subsection.

All the previous discussion was based on high-energy
hadronic interactions (pp elastic scattering) and, therefore,
the form factor concerns the hadronic structure of the pro-
ton. To end this subsection, let us discuss some results
recently obtained from experiments on elastic electron-
proton scattering and related to the electromagnetic struc-
ture of the proton. Although, presently, discrepancies from
two different experimental techniques characterize the re-
sults, future experimental and theoretical developments
may bring new insights on possible connections between
hadronic and electromagnetic form factors, as discussed in
what follows.

The experiments on elastic e − p scattering provide
information on the ratio R ≡ µpGEp(q2)/GMp(q2), where
GEp(q2) and GMp(q2) are the Sachs electric and magnetic
form factors and µp the proton magnetic moment. The
traditional method used to extract the form factors is based
on the Rosenbluth separation technique [57] and fits to data
on R, as function of the momentum transfer, have yielded
a scaling behavior: R ≈ 1 [58].

Recently, this ratio has been measured at the Jefferson
Laboratory by means of the polarization transfer technique
(ep → ep) and the results indicated a decrease of the ratio
from 0.97 to 0.27, as the momentum transfer increases from
0.5 to 5.5 GeV2 (nonscaling behavior) [59–61]. Extrapola-
tion from empirical fits indicates a zero (change of sign) at
q2 ≈ 7.7 GeV2 [61] and a recent phenomenological descrip-
tion of these data, in the context of a Regge parametrization
for Generalized Parton Distributions yielded a zero in the
electric form factor at q2 ≈ 8 GeV2 [62]. Certainly, these
results suggest some possible connections between the in-
ferred position of the zero in the electric form factor and
the position the eikonal zeros at q2 ≈ 6–9 GeV2 (Fig. 15),
which, as discussed before, may be associated with the
hadronic form factor.

However, new measurements performed at Jefferson
Lab through the Rosenbluth technique have confirmed the
scaling behavior [63] and the same result has been ob-
tained in more recent and improved measurements [64]:
global analysis of the cross section data indicates R ≈ 1 in
the momentum-transfer region q2: 0–6 GeV2.

As discussed in [64], despite the inconsistency of the
results in the region of large momentum transfer, both
measurements (polarization transfer and improved Rosen-
bluth) are of comparable precision and the origin of the
discrepancy is not clear yet (see [64] for references on pos-
sible theoretical corrections in development).

Certainly this enigma must be explained before any
attempt to conclude on the existence or not of a zero in
the electric form factor at q2 ≈ 7–8 GeV2. However, in case
that further experimental and/or theoretical developments
might favor the polarization-transfer form factors [64], it
may be important to investigate possible connections be-
tween zeros in the electric and hadronic form factors.

6.2 Eikonal at large q2

Figure 11 (and also 10) shows another interesting aspect
of the extracted eikonal, in the region of intermediate and
large momentum transfer. The results indicate that, after
the zero, the eikonal reaches a minimum and then ap-
proaches zero through negative values. That may indicate
a second asymptotic zero, which is obviously expected as
q2 → ∞. However, this approximation to zero through
negative values brings some new insights in model con-
structions.

For example, let us return to the impact picture by
Bourrely, Soffer and Wu. In this model, the contribution
from the Pomeron exchange is assumed to be factorized
in s and b, with the impact parameter dependence given
by the parametrization (11) for the form factors in the q2-
space. Since, as q2 → ∞, G(q) → 0 and fBSW(q) → − 1,
this parametrization qualitatively reproduces the change
of sign in the eikonal and the limit to zero through negative
values. However, as quoted before, the position of the zero
fixed at a2 = 3.45 GeV2 [24] is in disagreement with our
extracted behavior.

It should be noted that this model overestimates the
differential cross section data in the region of large momen-
tum transfer [10,24], a point also raised in [15]. If this effect
is not only a consequence of the above factorized Pomeron
contributions, it may be associated with the behavior of
the eikonal after the zero, as mentioned before, that is, the
short range contribution. In this case, it may be recalled
that a modified BSW factor (mBSW), given by

fmBSW(q) =
1 − q2/a2

1 + q4/a4 , (27)

can also generate the above behavior of the eikonal and
leads to good descriptions of the experimental data at large
momentum transfer. This function has been introduced
in [54] and used in both the geometrical approach (with
a2 = 8.2 GeV2) [55] and a hybrid Regge-dual model [56].
The differences between these two ansatz are illustrated in
Fig. 17 for the position of the zero at a2 = 3.45 GeV2.

We understand that tests with both functions, taking
into account the possibility that the parameter a2 depends
on the energy may lead to improved descriptions of the
experimental data. We are presently investigating this sub-
ject.

6.3 Eikonal at q2 = 0

Figure 16 shows the imaginary part of the eikonal at q2 = 0,
as obtained with both the numerical and semi-analytical
methods. As in the previous Subsections, we discuss here
some simple examples concerning the applicability of these
results in the phenomenological context.

Let us return to the Glauber model, expressed by (26).
Since at q2 = 0 the hadronic form factors are normalized by
Gp = 1, the dependence on the energy from the imaginary
part of the eikonal at q2 = 0 may be associated either with
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the number of participants constituents or with the ele-
mentary amplitude, or both. Only to treat a toy example,
let us assume N = NA x NB fixed at 3 x 3 = 9 and con-
sider the Optical Theorem at the elementary level, namely
σelem(s) = 4πfI(s, q = 0). In that case we can express the
elementary cross section in terms of the imaginary part of
the eikonal:

σelem(s) =
4π

N
χI(s, q = 0) . (28)

The values of the elementary cross sections, obtained
through this formula,withN = 9, from the extracted values
of the eikonal at q2 = 0, are displayed in Table 4. We see
that even with this toy model and for fixed N = 9, the
elementary cross sections at the ISR energy region, from
analysis of both pp and p̄p scattering, is of the order of 5–
6 mb, a reasonable estimation of the partonic cross sections.
Parametrizations of these cross sections as function of the
energy have been discussed in [65].

Table 4. Elementary (parton-parton) cross sections from pp
and p̄p scattering, (28). The errors come from the uncertain-
ties in the extracted values of χI(s, q = 0) through the semi-
analytical method

√
s σpp

elem σp̄p
elem

(GeV) (mb) (mb)
13.8 5.50±0.05 6.12±0.02
19.4 5.57±0.02 5.96±0.08
23.5 5.48±0.07 –
30.7 5.71±0.03 6.05±0.02
44.7 5.95±0.03 –
52.8 6.07±0.02 6.01±0.18
62.5 6.14±0.07 5.99±0.26
546.0 – 9.85±0.18
1800.0 – 14.53±0.14

In this simple example, we considered the number N
of participants in the elementary scattering as fixed. How-
ever, in principle, this number may also depend on the
energy and, for example, for a fixed elementary cross sec-
tion (typically 5–6 mb) the increase in χI(s, q = 0) may be
associated with an increase of N . These considerations are
aimed only to exemplify some possible uses of the extracted
eikonal. To go on with this discussion demands, however,
a more realistic formalism.

7 Conclusions and final remarks

In this work we have presented the results of analytical fits
to pp and p̄p differential cross section data, in a model in-
dependent way. As explained, we were not interested in the
dependence of the fit parameters with the energy, but only
in the best statistical results, in a model-independent con-
text.

By means of both a numerical and a semi-analytical
methods, we have determined the imaginary part of the
eikonal in the momentum-transfer space. Based on the
confidence region of the statistical results, we conclude
that the eikonal presents a zero and that the position of the
zero, roughly, decreases from 8.5 GeV2 to 6.0 GeV2 as

√
s

increases from 20 to 60 GeV. After the zero, the eikonal has
a minimum and then goes to zero through negative values.

We have presented a critical review on several aspects
related to analytical fits to the differential cross section data
and also discussions on the applicability of our results in
the phenomenological context. Although limited to very
simple models, we understand that these aspects may be
extended to more realistic approaches.

As discussed, in the phenomenological context, the
positivity of the elementary amplitudes determined from
quenched and full QCD [49] suggests that the eikonal zero
might be associated with the hadronic form factor. In that
case, the decrease in the position of the zero as the en-
ergy increases (Fig. 15) implies in hadronic form factors
depending on the energy. We understand that investiga-
tion of this possibility on well founded theoretical bases
may lead to important developments in the treatment of
the soft diffractive processes.

We have also called the attention to the fact that the po-
sition of the eikonal zeroa are consistent with the results for
the electromagnetic form factor obtained frompolarization-
transfer experiments. It is expected that the discrepancies
between the Rosembluth and polarization-transfer form
factors may be resolved in the near future [64].

As we have shown, only data at large values of the
momentum transfer can provide precise answers on the
topical question related with the eikonal zeros and their
dependence on the energy. In that sense, it would be very
important if the experiments at RHIC and LHC could
extend the region of momentum transfer to be investigated;
as stated in [15]: “Such experiments will give much more
valuable information for the diffraction interaction rather
than to go to higher energies”.



P.A.S. Carvalho et al.: Eikonal representation in the momentum-transfer space 375

Acknowledgements. M.J.M. and A.F.M. are thankful to
FAPESP for financial support (Contracts No. 01/08376-2,
No. 00/04422-7) and P.A.S.C. to Unipam-Centro Universitário
dePatos deMinas,MG.Weare grateful toR.F. Ávila, S.D.Cam-
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